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Green and spin-down vortex problems. While various approaches to incompressible SPH
(ISPH) have been proposed in the past decade, the present paper is restricted to the projec-
tion method for the pressure and velocity coupling. It is shown that the divergence-
free ISPH method cannot maintain stability in certain situations although it is accurate
before instability sets in. The density-invariant ISPH method is stable but inaccurate with
random-noise like disturbances. The combined ISPH, combining advantages in divergence-
free ISPH and density-invariant ISPH, can maintain accuracy and stability although at a

Keywords:
Incompressible smoothed particle
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Accuracy higher computational cost. Redistribution of particles on a fixed uniform mesh is also
Stability shown to be effective but the attraction of a mesh-free method is lost. A new diver-
Divergence-free velocity field gence-free ISPH approach is proposed here which maintains accuracy and stability while
Density invariance remaining mesh free without increasing computational cost by slightly shifting particles

away from streamlines, although the necessary interpolation of hydrodynamic character-
istics means the formulation ceases to be strictly conservative. This avoids the highly
anisotropic particle spacing which eventually triggers instability. Importantly pressure
fields are free from spurious oscillations, up to the highest Reynolds numbers tested.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian method, where the fluid medium is discretized by interac-
tion between particles rather than mesh cells. It was first introduced by Lucy [18], and Gingold and Monaghan [11]. The use
of SPH has since widely expanded in numerous areas [20]. The basic concept of SPH is that continuous media are represented
by discrete particles, whose movement prescribes the flow field. The particles have a kernel function to define their range of
interaction, and the hydrodynamic variable fields are approximated by integral interpolations. Meshes are not needed in the
simulation, which is a major advantage of SPH over Eulerian methods. SPH simulation of the incompressible flow is more
challenging than the compressible case, and is a main research focus. The simulations of the incompressible flows can be
achieved by two methods: (1) approximately simulating incompressible flows with a small compressibility, called Weakly
Compressible SPH (WCSPH); (2) simulating flows by enforcing the incompressibility, called Incompressible SPH (ISPH). In
ISPH methods the incompressibility has been generally achieved by the projection method [6,12,25,17]. The recent alterna-
tive approach of imposing the kinematic constraint of a constant volume for each fluid particle through non-thermodynamic
pressure [8] is not considered in this paper. It is however potentially competitive as shown through comparisons with
WCSPH in [8]. In this work, only the projection-based ISPH methods are studied.
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WCSPH method has been most widely used in simulations of incompressible flows. However, with WCSPH, the pressure
field strongly depends on a state equation, generally resulting in large pressure fluctuations. The accuracy can be improved
by remeshing on a uniform grid, which is first introduced by Chaniotis et al. [3] in the context of SPH. But clearly this loses
the mesh free characteristic. Moreover, to satisfy the Courant-Friedrichs-Lewy (CFL) time-step constraint, with a speed of
sound in the CFL number expression, the time step is limited to a very small value. Compressibility also causes sound wave
reflection at the boundaries. All these considerations make a fully incompressible algorithm a desirable alternative to couple
pressure and velocity in SPH.

An approach for modelling incompressible flow with a free surface using a fully Lagrangian technique was proposed by
Koshizuka et al. [14]. In this method, a penalty-like formulation was employed to adjust the pressure where density varia-
tions occurred. In 1998, Koshizuka et al. [15] presented another incompressible method. A pressure Poisson equation was
solved instead of a penalty method with a source term proportional to density variation. In 1999, Cummins and Rudman
[6] applied the projection method in SPH, which projects an intermediate velocity field onto a divergence-free field and a
curl-free field respectively. Shao and Lo [25] used an incompressible method, similar to that in [15], to describe the free sur-
face in dam-break flow. Colin et al. [5] proposed an improved Laplacian operator in a method similar to [6]. In 2007 and 2008,
Lee et al. [16,17] pointed out that a truly ISPH method improved the accuracy of the SPH method. In 2007, different from the
projection-based ISPH, the non-thermodynamic pressure is calculated in [8] to maintain the constant volume for each fluid
particle. In 2007, Hu and Adams [12] proposed a stable algorithm to obtain both a velocity-divergence-free field and constant
density, with an additional Poisson equation solution. In 2008, Fang and Parriaux [9] used a remeshing method to overcome
the instability problem in the Lagrangian finite point method (LFPM). However, in the finite point method, strict conserva-
tion is not maintained.

In [12], it was pointed out that if only a divergence-free velocity field is enforced, density variation, or particle clustering
could happen due to the spatial truncation error; moreover, this density error could accumulate during the simulation. But
this problem is firstly addressed in [8] in a different context. Fang and Parriaux [9] stated that irregular particle distributions
will exhibit increasing numerical errors in SPH, and for LFPM, an ill conditioned matrix in the linear system could appear. On
the one hand, with the ISPH method proposed in [6,17], a divergence-free velocity field is enforced, but the particle spacing is
not considered, which could introduce instability in the simulation, based on the study in [12,9]. On the other hand, in [25],
the particle spacing can be well maintained, resulting from the enforcement of density invariance, but the divergence-free
condition for velocity field is not enforced. To better illustrate the advantages and disadvantages of all these existing projec-
tion-based ISPH methods [6,25,12,17], they are applied and examined here, based on the open-source code SPHysics [26],
recently extended to account for the incompressibility. Moreover, a new method, where the particle positions are shifted
slightly across streamlines, and the hydrodynamic variables at new positions are interpolated by Taylor series, is presented
here.

In this paper, the basic SPH methodology will be introduced in Section 2. The details about all the projection-based ISPH
algorithms are introduced in Section 3. In Section 4, the finite volume commercial package STAR-CD is introduced. Three test
cases, Taylor-Green vortices, vortex spin-down and lid-driven cavity, are simulated here and defined in Section 5. For the
first two cases, Taylor-Green vortices and vortex spin-down, previous projection-based ISPH methods and a new approach
providing stability and accuracy efficiently are applied. The latter is further demonstrated for lid-driven cavity simulations.
The results and discussion are presented in Section 6.

2. SPH methodology

In the SPH method, the Navier-Stokes equations in Lagrangian form, shown below, are solved. The pressure gradient term
and viscous term are approximated by the operators introduced later. Incompressibility here is enforced in the projection
method by a pressure Poisson equation [4].

vV-Uu=0 1)
du 1 )
E_fEVPJer U+F (2)

2.1. Basic smoothed particle hydrodynamics (SPH) methodology

2.1.1. SPH interpolation
For a variable 4, in SPH formalism, the value of A at a point r is written as a convolution product of the variable A with the
Dirac ¢ function

A(r) = /A(r’)6(|r —r|dr. 3)

In SPH, the ¢ function is approximated by a smoothing kernel function wy(|r — r’|), with a smoothing length h. Therefore, Eq.
(3) can be approximated as



R. Xu et al./Journal of Computational Physics 228 (2009) 6703-6725 6705

A(r) ~ /A(l“)a)h(|r —r|)dr, (4)
Q
where Q is the supporting domain. In a discretized format, the interpolation can be written as
A(i) = > VAT on(ry). (5)
where V; is the volume of particle j. The particle density is given by
p(r) =Y myn(ry). (6)

In the later parts, wy(ry) will be briefly written as wj.
In this paper, a fifth-order kernel [21] is used for all cases.

2.1.2. Gradient and divergence operator
The gradient operator for a general variable ¢ is given by

Vg ~ — Z Vi(¢i — ¢;) V. (7)
J

One notable point is that the Einstein notation is not applied in this equation, and also the others below. The normalization
[1,23] is applied to improve the accuracy. The expression for the kernel normalization can be read

Vi = L(r)Vwy. (8)
where V@j is substituted into Eq. (7) for Vw; as the normalized kernel first derivative, and
Yo o\ 1
SVil =X G Vi~ 0
Zjvj(yj —y)ag—;”ZjVj(yj —J’)a%j

A similar operator with kernel normalization is used for the divergence calculation.

L(r) =

2.1.3. Viscous term and Laplacian operator
The viscous term expression applied in this paper is identical to the one suggested by Morris [21].

m;(W; + )T - Vo
Au), =" = ! u; 10
(/J, )1 ; pj(rg T '72) i ( )

where m is the mass of the particle; p is the fluid density; u is the dynamic viscosity; u; is the velocity of particle
i,u; = uw; — wj; 1; is the position of particle i, rj =r; — rj; 1 is a small value to avoid singular denominator. An approximate
Laplacian operator with the same format is used.

m; pTy - Vg
Api=>) 221200 2 11
p; Zj: N (11)

where p; = p; — p;. Other researchers [5,24] have proposed higher order operators, but these were not applied by [6,12,17,25]
with whom we are making comparisons. Only Eq. (11) is used in this work. To maintain the viscous non-slip and homoge-
neous Neumann conditions for the wall, the mirror particle method [21] is used here.

2.2. The error caused by particle clustering

In [2,12,9], it was shown that increasingly irregular particle distributions will exhibit increasing numerical errors in re-
sults. Also, Fang and Parriaux [9] pointed out that an ill-conditioned matrix in the linear system could appear, with increas-
ing non-uniformity of particle distribution. In this paper, the effect of particle clustering is an important theme.

In [19], Monaghan pointed out that the tensile instability in SPH will result in the clustering of particles. Fig. 1(a) shows
the contour graph of the 2-D quintic kernel value, and Fig. 1(b) its first derivative. From the cross-section profile of the first
derivative, at x = 0, Fig. 1(c), it can be seen that when particles are getting close to each other within a certain distance range,
the interaction between them is not increased, but reduced. This non-physical behaviour of the kernel function will intro-
duce error in simulations, such as in the pressure gradient, or the Laplacian operator, and cause the particle clustering
phenomenon.

Although it is reported that the quadratic kernel can reduce this non-physical behaviour [7], its low-order accuracy and
second derivative property, which strongly influences the stability of SPH method, limit its application in high-accuracy sim-
ulations. In [19], Monaghan introduced an extra artificial stress in the pressure term to overcome particle clustering prob-
lems. The effective alternative of remeshing on a uniform grid was first introduced by Chaniotis et al. [3] to remove
clustering. In [12], the clustering problem is solved by introducing an extra internal iteration in the projection-based incom-
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Fig. 1. (a) Contour graph for 2-D quintic kernel; (b) contour graph for the first derivative, %, of 2-D quintic kernel; (c) profile for the first derivative of quintic

kernel, % at cross-section x = 0.

pressible SPH algorithm to keep reasonable particle spacing. In this paper, a new method, based on projection method with
slight particle shifting, is introduced to overcome particle clustering without relying on the background uniform mesh.

3. Projection-based incompressible SPH algorithm
3.1. ISPH based on keeping divergence-free velocity field (ISPH_DF) [6,17]

To keep a divergence-free velocity field, the projection method [4] is used, as first presented by Cummins and Rudman [6]
in 1999. A second-order time marching scheme is applied, where both the density and mass of particles are constant. Particle
positions, r?, are advected with velocity u! to positions rj,

r; =17 + Atu}'. (12)

An intermediate velocity u; is calculated at the position, r}, based on the momentum equation without the pressure gradient
term,

u=u (vvzu;? + F?)AL (13)

where F} is the body force.
Solving the pressure Poisson equation (PPE) Eq. (14), the pressure at time n + 1 can be obtained from

V- (%Vp"“)'zAltV-u;‘. (14)

The velocity at time n + 1, uf*! will result from the projection of u;. Therefore,

utl = f%Vp?“- (15)
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The particle position is finally advanced in time,

n+1 n
u) (16)

e +At< 5

In an alternative formulation, Lee et al. [17] derived the velocity from the pressure correction with the particles at r! before
advancing their positions with the total velocity, termed truly incompressible SPH. This formulation was also applied here
and produced results identical to [6] for the test cases investigated. This incompressible divergence-free SPH method will be
referred to as ISPH_DF.

3.2. ISPH based on keeping density invariance (ISPH_DI) [25]

Similar to the method in [15], Shao and Lo [25] proposed a projection-based incompressible method to impose density
invariance to describe free surface flows. An intermediate velocity, u;, is calculated without the pressure gradient term as
before,

u=ul + (szu}‘ + F?) At. 17)
The particles are convected to an intermediate position, r},
] =17 + Atu;. (18)

At this intermediate position, the intermediate velocity is projected on to two spaces, VP™"' and u!, which is similar to
ISPH_DF. But instead of calculating the pressure field P"*' through a Poisson equation with a velocity divergence on the right
hand side (RHS), the pressure field is obtained by solving a Poisson equation with a relative density difference on RHS, as
shown in Eq. (19).

v. (lVPnH) :pofg (19)
P PoAL
And the intermediate velocity field will be corrected by the pressure gradient,
w =gy - Aypr (20)
0
To complete the time step, as for ISPH_DF, a second-order time marching scheme is used.
u ! u?
r?+1:rl{1+At(%> (1)

Egs. (19) and (14) are actually equivalent, if one assumes the continuity equation for the incompressible flow to be valid at
the intermediate position, r;, with

(V) = - <% iiif);;' (22)

Substituting Eq. (22) into Eq. (14), Eq. (19) can be obtained. The numerical performance of two Poisson equations, Eqs. (14)
and (19), are quite different. In this work it is found that with Eq. (19) simulations are more stable, but the accuracy of ISPH
has been deteriorated. This density-invariant ISPH method will be referred to as ISPH_DI.

3.3. ISPH based on combining both a divergence-free velocity field and a density-invariant field (ISPH_DFDI) [12]

In [12], Hu and Adams point out that if only a divergence-free velocity field is enforced, a large density variation will
appear. They suggested that a divergence-free and density-invariance algorithm should be applied. This requires two pres-
sure Poisson equations to be solved in this algorithm.

Similar to Shao and Lo’s method [25], to keep the density constant, represented as p! = p?, the particle positions are
adjusted. First, intermediate velocities and particle positions are obtained by

u?.n+1/2 _ u? + (szuP + F:I) % (23)
= a2 AL (24)
The intermediate particle density p*"*1 is calculated. And a Poisson equation
Atz ((] n pn _ pf.nﬂ
—_— V- 7Vp> ) [ S i E— 25
2 P i pi (25)

is solved to adjust particle position, shown later. If we define
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where m is the number of internal iterations.
As for ISPH_DF, a Poisson equation needs to be solved to keep the velocity field divergence-free. First, the velocity field is

explicitly calculated without considering the pressure gradient term.

1

u»f.n+1 _ u:,nﬂ/z i (vvzui*,nﬂ/z 4 F:,n+1/2>

At
2

The velocity field is then corrected by the pressure gradient,
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*, At
u! =y o _ EVp?” (32)
where, the pressure field is obtained from the pressure Poisson equation.
1 n+1 _ 2 *N+1
v (p ) =5V (33)

Similar to Eq. (19) in ISPH_DI, Eq. (25) or (28) is solved to prevent particle clustering, while Eq. (33) is used to keep a diver-
gence-free velocity field. Uniform particle spacing improves the stability of simulations, as will be shown later. Through solv-
ing two Poisson equations, Eqs. (25) and (33), both the density invariance and divergence-free velocity field are
approximated. This combined incompressible SPH method will be referred to as ISPH_DFDL.

3.4. ISPH_DF with shifting particle position (ISPH_DFS)

In ISPH_DF, particles move along the streamlines when the Lagrangian-form Navier-Stokes equations are solved accu-
rately. The stretching and compressing of particle spacing, similar to the mesh distortion in the finite volume (FV) method,
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Fig. 6. Geometry of lid-driven cavity case. The graph shows the streamline in the case with Re = 400, simulated by ISPH_DFS, with a resolution of 60 x 60.
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Fig. 7. Normalized velocity profiles in Taylor-Green vortices, Re = 10,t = 0.1 s, with a resolution of 40 x 40. Velocity components and distances are
normalized with the velocity scale U,U = 1, and the square length D, D = 1. (a) Horizontal velocity component profile, at x = 0.0 m; (b) vertical velocity
component profile, at y = 0.0 m. Ao = ISPH_DFDI; O =ISPH_DF; 00 = ISPH_DI; ¢ = ISPH_DFS; — = analytical results.
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happen under certain conditions, such as Taylor-Green vortices shown in Fig. 2(a). It is observed in the simulations that this
non-uniform particle distribution will hinder the convergence of linear solvers. Also, on the one hand, if the streamlines
direct the particles towards each other, taking Taylor-Green vortices as an example, Fig. 3, the particles will cluster;
on the other hand, the non-physical behaviour of the kernel, introduced in Section 2.2, will weaken the interaction between
particles when particle distances are within a close range. Then particles will continue clustering if the inertial motion,
determined by Re number, is strong enough. The error, caused by this kernel flaw, also causes the instability in the
projection-based ISPH.

The following method stabilizes the accurate ISPH_DF method. The particle distribution is effectively well maintained,
shown in Fig. 2(b). The pressure field is calculated as in ISPH_DF. And the particles are advanced, shifted slightly, and accord-
ingly, the hydrodynamic variables are corrected by the Taylor series,

by = i+ oty - (V); + O(or3) o

where ¢ is a general variable; i and i’ are the particle’s old position and its new position respectively; or; is the distance
vector between the particle’s new position and its old position. In the following tests, only the first two terms are used in
simulations, giving an order consistent with the Laplacian operator. Higher order accuracy may be achieved by extending
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Fig. 8. Normalized velocity profiles in Taylor-Green vortices, Re = 100,t = 1.0 s, with a resolution of 40 x 40. Velocity components and distances are
normalized with the velocity scale U, U = 1, and the square length D, D = 1. (a) Horizontal velocity component profile, at x = 0.0 m; (b) vertical velocity
component profile, at y = 0.0 m. A = ISPH_DFDI; O = ISPH_DI; ¢ = ISPH_DFS; — = analytical results.
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the Taylor series and the divergence-free condition would be maintained with the same order as the interpolation.With the
position shifting and interpolation, the particles redistribute themselves in a more isotropic manner, avoiding particle clus-
tering in the direction of maximum compression and sparse discretisation error in the stretching direction. The method with
particle shifting is called ISPH_DFS.

The idea of shifting particle positions has been proposed previously in the context of the Finite Volume Particle Method
(FVPM) by Nestor et al. [22]. This allows the use of particle velocities with a correction, w’, added to conserve fluid momen-
tum. Different from FVPM, the adjustment of particle velocity here will introduce extra diffusion terms to the total momen-
tum. The position shift is applied to particles, and the use of a first-order Taylor series interpolates hydrodynamic variable
values at the new position, as given in Eq. (34). Similar to the velocity correction equation, v/, in [22], but modifying the par-
ticle shifting magnitude, «, in relation to the particle convection distance and the particle size, the position shift reads

or; = COCR,‘ (35)

where C is a constant, set as 0.01-0.1, as discussed below; o is the shifting magnitude which is equal to the maximum par-
ticle convection distance U, dt, with U, the maximum particle velocity, and dt the time step; R; is the shifting vector, and
reads:
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Fig. 10. Maximum velocity, unq, decaying against time in Taylor-Green vortices, Re = 10, with a resolution of 40 x 40. Maximum velocity, Upg, is
normalized with velocity scale U; time is scaled by T, where T = D/U. --- = ISPH_DF; --- = ISPH_DI; - - - = ISPH_DFDI; ---- = ISPH_DFS; — = analytical results.
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M; ?2
R = _'2nij (36)
j=1 i
where M; is the number of neighbouring particles around particle i; r; is the distance between particle i and particle j; 7; is
the average particle spacing in the neighbourhood of i, and

1 &
U v j;"ij; 37)

n; is the unit distance vector between particles i and j. The summation of n; actually represents the anisotropy of the particle
spacings. 7? /rl?j is used here as a weighting function to reduce the influence from remote neighbouring particles. R; is eval-
uated on a fixed particle map obtained after the evolution equation Eq. (16). No internal iteration for a converged particle
position is needed here.

The shifting distance should be large enough to prevent instability and small enough not to cause inaccuracy due to the
Taylor series correction. Values of C within the range 0.01-0.1 satisfy these criteria for these test cases and dependence on

Fig. 12. Maximum velocity, 4, decaying against time in Taylor-Green vortices, Re = 1000. Maximum velocity, unq, is normalized with velocity scale U;

time is scaled by T, where T = D/U. --- = ISPH_DI (40 x 40); - -- = ISPH_DFDI (40 x 40); ---- = ISPH_DFS (40 x 40); --- = ISPH_DFS (80 x 80); — = analytical
results.
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Fig. 13. Estimated relative error profiles for the horizontal velocity component, u, with different resolutions, Re = 100. (a) Estimated error based on Eq.
(41); (b) estimated error based on L2 norm. The time is normalized by T, and T = U/D. — =40 x 40; ---=80 x 80; ---=120 x 120; --- =160 x 160;
—--=200 x 200.
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Fig. 14. Estimated relative error profiles for the horizontal velocity component, u, with different resolutions, Re = 1000. (a) Estimated error based on
Eq. (41); (b) estimated error based on L2 norm. The time is normalized by T, and T = U/D. — =40 x 40; ---=80 x 80; --- =120 x 120; --- = 160 x 160;
—-—-=200 x 200; ---- = 240 x 240.
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Fig. 15. Spatial accuracy estimation for the horizontal velocity component, u, with ISPH_DFS, Re = 1000, t = 10.0 s. The smoothing length, h, is normalized
by the square length D, where D = 1. O = the estimated simulation error, e; - - = slope of dr'; — = slope of dr?.
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o Correct the velocity field by Eq. (34);
o Continue the calculation for next time step.

This method is actually similar in concept to the remeshing method in [3] using a fixed mesh but it maintains the meshless
characteristic. The shifting of particle position and corresponding interpolation will introduce truncation errors in the results
which will however be shown below to have negligible effect on the accuracy. This small change in ISPH_DF makes this
method much more robust. And the efficiency of simulations is improved, comparing with ISPH_DFDI. It should be pointed
out here that this method is not a strictly conservative method, similar to LFPM [9].

3.5. Linear solver

A Bi-Conjugate Gradients Stabilized solver (BiCGSTAB), with Jacobi preconditioner, is used to solve the linear system. A
small calculation is conducted to test the linear solver and boundary conditions with mirror particles. A 1-D channel with
periodic boundaries in x direction is set up. At the top of the channel, y = 1, a homogeneous Neumann boundary, %’ =0,
is set; at the bottom, y = 0, a Dirichlet boundary, P = 0, is set. The equation % = —1 is solved with different resolutions.
The solver is tested with 40, 50 and 100 particles in the vertical direction, and compared with the analytical solution,
P = —0.5y2 +y, shown in Fig. 4. During all simulations, the convergence criterion is set as 1.0 x 10~ for the normalized
residual.

4. STAR-CD commercial package

Reference solutions for vortex spin-down and lid-driven cavity cases can probably be digitalized from the literature, but
with cheap and fast convergence of commercial CFD codes on 2D cases, we simply computed these cases again on a fine
Cartesian grid with the well-known STAR-CD, a Finite Volume commercial CFD code (see e.g. Jasak and Gosman [13] for a

Table 1
Computing costs comparison for Taylor-Green vortices with a resolution of 40 x 40. Physical time = 2.0 s. The same time step is used for all the methods under
the same Reynolds situation.

Re=10 Re =100 Re = 1000
ISPH_DF 1,103 s Unstable Unstable
ISPH_DI 1,091 s 1,250 s 1,323 s
ISPH_DFDI 4,000 s 5352s 5,625 s
ISPH_DFS 1,213 s 1,281s 1,387 s
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Fig. 16. Computing cost of ISPH_DFS, for physical time 2.0 s on a Dell OPTIPLEX GX620 PC, with a Dual Core 3.2 GHz CPU and 2 GB memory, against the
inverse particle spacing for Taylor-Green vortices, Re = 1000.
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description and test of the FV algorithm). The convergence criterion is set as 10~°. The PISO algorithm is used for pressure
and velocity coupling. Second-order differencing schemes are used for convection terms in the calculation.

5. Simulation cases
5.1. Taylor-Green vortices

The Taylor-Green vortices simulations are conducted. The analytical velocity field is
u = —Ue™ cos(27x) sin(2my)

38
v = Ue® sin(27x) cos(2my) G8)

where U is the velocity scale, equal to 1.0 m/s here; kinematic viscosity v are 0.1 m?/s,0.01 m?/s and 0.001 m?/s in three
runs with three different Reynolds numbers, Re = 10, Re = 100, Re = 1000;b = f% is the decay rate of the velocity field;
u and v are the horizontal and vertical velocity components respectively. Different resolutions are used to investigate the
spatial accuracy of ISPH_DFS. The Reynolds number is calculated by

Re = ? (39)

where D is the length of the unit square side.
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Fig. 17. Velocity and pressure profiles in vortex spin-down, Re = 10,t = 0.1 s, with a resolution of 40 x 40. Velocity components are normalized with the
velocity scale U, U = 1; the coordinates are normalized with the square length D, D = 1; the pressure is normalized with pU?, where p is the fluid density.
(a) Horizontal velocity component profile, at x = 0.0m; (b) vertical velocity component profile, at y = 0.0 m; (c) pressure profile at x = 0.0 m. A = I[SPH_DFDI;
O =ISPH_DF; O = ISPH_DI; < = ISPH_DFS; — = STAR-CD.
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Because of the existence of analytical results for Taylor-Green vortices, the accuracy of the algorithm and the code can be
tested here. During simulations, it is observed that, under high Reynolds situations, the particle spacings are highly com-
pressed in one direction, but stretched in the other roughly normal direction, with ISPH_DF. Because of the error caused
by highly-distorted particle spacings, as mentioned before, the convergence with ISPH_DF can fail. For all values of Reynolds
number, the four projection-based ISPH methods are applied. The accuracy, stability and computing expense of the four
methods are compared.

5.2. Vortex spin-down

Similar to Taylor-Green vortices case, in vortex spin-down simulations, a vortex is bounded by four walls, placed in the
middle of the domain, shown in Fig. 5. The vortex spin-down case is simulated for Re = 10,Re = 100 and Re = 1000. An initial
velocity field is given by

u="U(y—0.5)

v =U(05—x) “0)

in a unit square. 41 x 41 particles, equivalent to a resolution of 40 x 40 in the FV method, are used to compare four projec-
tion-based ISPH methods. The Reynolds number calculation is the same as that in Taylor-Green vortices, Eq. (39). Also, D,U
and v are the same as those in Taylor-Green vortices.
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Fig. 18. Velocity and pressure profiles in vortex spin-down, Re = 100, t = 1.0 s, with a resolution of 40 x 40. Velocity components are normalized with the
velocity scale U, U = 1; the coordinates are normalized with the square length D, D = 1; the pressure is normalized with pU?, where p is the fluid density.
(a) Horizontal velocity component profile, at x = 0.0 m; (b) vertical velocity component profile, at y =0.0 m; (c) pressure profile at x =0.0 m.
4 =ISPH_DFDI; O = ISPH_DI; < = ISPH_DFS; — = STAR-CD.
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The accuracy, stability and computing time are compared among all the four projection-based ISPH methods. During sim-
ulations, it is found that particle spacings cannot be well maintained if ISPH_DF is used. It is the same as the findings in [9]
that the irregular particle distribution hinders the convergence of the linear solver, and sometimes even causes the conver-
gence to fail.

5.3. Lid-driven cavity

The lid-driven cavity problem has long been used a test or validation case for new codes or new solution methods. A good
set of data for comparison is [10], where the data are listed out in a table for different Reynolds number situations. The two-
dimensional geometry is shown in Fig. 6. In simulations, the fluid is accelerated by the lid at the top of the cavity to a steady
state. Simulations with fully-developed flows are compared with data in [10] and STAR_CD results.

In this test case, only ISPH_DFS is used. The Reynolds number calculation is the same as that in Taylor-Green vortices. U
and D are set to 1 m/s and 1 m for convenience. Reynolds numbers, Re = 100, Re = 400 and Re = 