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a b s t r a c t

The stability and accuracy of three methods which enforce either a divergence-free velocity
field, density invariance, or their combination are tested here through the standard Taylor–
Green and spin-down vortex problems. While various approaches to incompressible SPH
(ISPH) have been proposed in the past decade, the present paper is restricted to the projec-
tion method for the pressure and velocity coupling. It is shown that the divergence-
free ISPH method cannot maintain stability in certain situations although it is accurate
before instability sets in. The density-invariant ISPH method is stable but inaccurate with
random-noise like disturbances. The combined ISPH, combining advantages in divergence-
free ISPH and density-invariant ISPH, can maintain accuracy and stability although at a
higher computational cost. Redistribution of particles on a fixed uniform mesh is also
shown to be effective but the attraction of a mesh-free method is lost. A new diver-
gence-free ISPH approach is proposed here which maintains accuracy and stability while
remaining mesh free without increasing computational cost by slightly shifting particles
away from streamlines, although the necessary interpolation of hydrodynamic character-
istics means the formulation ceases to be strictly conservative. This avoids the highly
anisotropic particle spacing which eventually triggers instability. Importantly pressure
fields are free from spurious oscillations, up to the highest Reynolds numbers tested.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian method, where the fluid medium is discretized by interac-
tion between particles rather than mesh cells. It was first introduced by Lucy [18], and Gingold and Monaghan [11]. The use
of SPH has since widely expanded in numerous areas [20]. The basic concept of SPH is that continuous media are represented
by discrete particles, whose movement prescribes the flow field. The particles have a kernel function to define their range of
interaction, and the hydrodynamic variable fields are approximated by integral interpolations. Meshes are not needed in the
simulation, which is a major advantage of SPH over Eulerian methods. SPH simulation of the incompressible flow is more
challenging than the compressible case, and is a main research focus. The simulations of the incompressible flows can be
achieved by two methods: (1) approximately simulating incompressible flows with a small compressibility, called Weakly
Compressible SPH (WCSPH); (2) simulating flows by enforcing the incompressibility, called Incompressible SPH (ISPH). In
ISPH methods the incompressibility has been generally achieved by the projection method [6,12,25,17]. The recent alterna-
tive approach of imposing the kinematic constraint of a constant volume for each fluid particle through non-thermodynamic
pressure [8] is not considered in this paper. It is however potentially competitive as shown through comparisons with
WCSPH in [8]. In this work, only the projection-based ISPH methods are studied.
. All rights reserved.
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WCSPH method has been most widely used in simulations of incompressible flows. However, with WCSPH, the pressure
field strongly depends on a state equation, generally resulting in large pressure fluctuations. The accuracy can be improved
by remeshing on a uniform grid, which is first introduced by Chaniotis et al. [3] in the context of SPH. But clearly this loses
the mesh free characteristic. Moreover, to satisfy the Courant–Friedrichs–Lewy (CFL) time-step constraint, with a speed of
sound in the CFL number expression, the time step is limited to a very small value. Compressibility also causes sound wave
reflection at the boundaries. All these considerations make a fully incompressible algorithm a desirable alternative to couple
pressure and velocity in SPH.

An approach for modelling incompressible flow with a free surface using a fully Lagrangian technique was proposed by
Koshizuka et al. [14]. In this method, a penalty-like formulation was employed to adjust the pressure where density varia-
tions occurred. In 1998, Koshizuka et al. [15] presented another incompressible method. A pressure Poisson equation was
solved instead of a penalty method with a source term proportional to density variation. In 1999, Cummins and Rudman
[6] applied the projection method in SPH, which projects an intermediate velocity field onto a divergence-free field and a
curl-free field respectively. Shao and Lo [25] used an incompressible method, similar to that in [15], to describe the free sur-
face in dam-break flow. Colin et al. [5] proposed an improved Laplacian operator in a method similar to [6]. In 2007 and 2008,
Lee et al. [16,17] pointed out that a truly ISPH method improved the accuracy of the SPH method. In 2007, different from the
projection-based ISPH, the non-thermodynamic pressure is calculated in [8] to maintain the constant volume for each fluid
particle. In 2007, Hu and Adams [12] proposed a stable algorithm to obtain both a velocity-divergence-free field and constant
density, with an additional Poisson equation solution. In 2008, Fang and Parriaux [9] used a remeshing method to overcome
the instability problem in the Lagrangian finite point method (LFPM). However, in the finite point method, strict conserva-
tion is not maintained.

In [12], it was pointed out that if only a divergence-free velocity field is enforced, density variation, or particle clustering
could happen due to the spatial truncation error; moreover, this density error could accumulate during the simulation. But
this problem is firstly addressed in [8] in a different context. Fang and Parriaux [9] stated that irregular particle distributions
will exhibit increasing numerical errors in SPH, and for LFPM, an ill conditioned matrix in the linear system could appear. On
the one hand, with the ISPH method proposed in [6,17], a divergence-free velocity field is enforced, but the particle spacing is
not considered, which could introduce instability in the simulation, based on the study in [12,9]. On the other hand, in [25],
the particle spacing can be well maintained, resulting from the enforcement of density invariance, but the divergence-free
condition for velocity field is not enforced. To better illustrate the advantages and disadvantages of all these existing projec-
tion-based ISPH methods [6,25,12,17], they are applied and examined here, based on the open-source code SPHysics [26],
recently extended to account for the incompressibility. Moreover, a new method, where the particle positions are shifted
slightly across streamlines, and the hydrodynamic variables at new positions are interpolated by Taylor series, is presented
here.

In this paper, the basic SPH methodology will be introduced in Section 2. The details about all the projection-based ISPH
algorithms are introduced in Section 3. In Section 4, the finite volume commercial package STAR-CD is introduced. Three test
cases, Taylor–Green vortices, vortex spin-down and lid-driven cavity, are simulated here and defined in Section 5. For the
first two cases, Taylor–Green vortices and vortex spin-down, previous projection-based ISPH methods and a new approach
providing stability and accuracy efficiently are applied. The latter is further demonstrated for lid-driven cavity simulations.
The results and discussion are presented in Section 6.
2. SPH methodology

In the SPH method, the Navier–Stokes equations in Lagrangian form, shown below, are solved. The pressure gradient term
and viscous term are approximated by the operators introduced later. Incompressibility here is enforced in the projection
method by a pressure Poisson equation [4].
r � U ¼ 0 ð1Þ
dU
dt
¼ � 1

q
rP þ mr2Uþ F ð2Þ
2.1. Basic smoothed particle hydrodynamics (SPH) methodology

2.1.1. SPH interpolation
For a variable A, in SPH formalism, the value of A at a point r is written as a convolution product of the variable A with the

Dirac d function
AðrÞ ¼
Z

Aðr0Þdðjr� r0jÞdr0: ð3Þ
In SPH, the d function is approximated by a smoothing kernel function xhðjr� r0jÞ, with a smoothing length h. Therefore, Eq.
(3) can be approximated as
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AðrÞ �
Z

X
Aðr0Þxhðjr� r0jÞdr0; ð4Þ
where X is the supporting domain. In a discretized format, the interpolation can be written as
AðriÞ �
X

VjAðrjÞxhðrijÞ: ð5Þ
where Vj is the volume of particle j. The particle density is given by
qðrÞ �
X

mjxhðrijÞ: ð6Þ
In the later parts, xhðrijÞ will be briefly written as xij.
In this paper, a fifth-order kernel [21] is used for all cases.

2.1.2. Gradient and divergence operator
The gradient operator for a general variable / is given by
r/i ’ �
X

j

V jð/i � /jÞrxij: ð7Þ
One notable point is that the Einstein notation is not applied in this equation, and also the others below. The normalization
[1,23] is applied to improve the accuracy. The expression for the kernel normalization can be read
r ~xij ¼ LðrÞrxij: ð8Þ
where r ~xij is substituted into Eq. (7) for rxij as the normalized kernel first derivative, and
LðrÞ ¼
P

jV jðxj � xÞ @xij

@x

P
jV jðxj � xÞ @xij

@yP
jV jðyj � yÞ @xij

@x

P
jV jðyj � yÞ @xij

@y

0
@

1
A
�1

: ð9Þ
A similar operator with kernel normalization is used for the divergence calculation.

2.1.3. Viscous term and Laplacian operator
The viscous term expression applied in this paper is identical to the one suggested by Morris [21].
ðlDuÞi ¼
X

j

mjðli þ ljÞrij � rxij

qjðr2
ij þ g2Þ uij ð10Þ
where m is the mass of the particle; q is the fluid density; l is the dynamic viscosity; ui is the velocity of particle
i;uij ¼ ui � uj; ri is the position of particle i; rij ¼ ri � rj; g is a small value to avoid singular denominator. An approximate
Laplacian operator with the same format is used.
Dpi ¼
X

j

2
mj

qj

pijrij � rxij

ðr2
ij þ g2Þ ð11Þ
where pij ¼ pi � pj. Other researchers [5,24] have proposed higher order operators, but these were not applied by [6,12,17,25]
with whom we are making comparisons. Only Eq. (11) is used in this work. To maintain the viscous non-slip and homoge-
neous Neumann conditions for the wall, the mirror particle method [21] is used here.

2.2. The error caused by particle clustering

In [2,12,9], it was shown that increasingly irregular particle distributions will exhibit increasing numerical errors in re-
sults. Also, Fang and Parriaux [9] pointed out that an ill-conditioned matrix in the linear system could appear, with increas-
ing non-uniformity of particle distribution. In this paper, the effect of particle clustering is an important theme.

In [19], Monaghan pointed out that the tensile instability in SPH will result in the clustering of particles. Fig. 1(a) shows
the contour graph of the 2-D quintic kernel value, and Fig. 1(b) its first derivative. From the cross-section profile of the first
derivative, at x ¼ 0, Fig. 1(c), it can be seen that when particles are getting close to each other within a certain distance range,
the interaction between them is not increased, but reduced. This non-physical behaviour of the kernel function will intro-
duce error in simulations, such as in the pressure gradient, or the Laplacian operator, and cause the particle clustering
phenomenon.

Although it is reported that the quadratic kernel can reduce this non-physical behaviour [7], its low-order accuracy and
second derivative property, which strongly influences the stability of SPH method, limit its application in high-accuracy sim-
ulations. In [19], Monaghan introduced an extra artificial stress in the pressure term to overcome particle clustering prob-
lems. The effective alternative of remeshing on a uniform grid was first introduced by Chaniotis et al. [3] to remove
clustering. In [12], the clustering problem is solved by introducing an extra internal iteration in the projection-based incom-
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Fig. 1. (a) Contour graph for 2-D quintic kernel; (b) contour graph for the first derivative, @f
@y, of 2-D quintic kernel; (c) profile for the first derivative of quintic

kernel, @f
@y, at cross-section x ¼ 0.
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pressible SPH algorithm to keep reasonable particle spacing. In this paper, a new method, based on projection method with
slight particle shifting, is introduced to overcome particle clustering without relying on the background uniform mesh.
3. Projection-based incompressible SPH algorithm

3.1. ISPH based on keeping divergence-free velocity field (ISPH_DF) [6,17]

To keep a divergence-free velocity field, the projection method [4] is used, as first presented by Cummins and Rudman [6]
in 1999. A second-order time marching scheme is applied, where both the density and mass of particles are constant. Particle
positions, rn

i , are advected with velocity un
i to positions r�i ,
r�i ¼ rn
i þ Dtun

i : ð12Þ
An intermediate velocity u�i is calculated at the position, r�i , based on the momentum equation without the pressure gradient
term,
u�i ¼ un
i þ mr2un

i þ Fn
i

� �
Dt; ð13Þ
where Fn
i is the body force.

Solving the pressure Poisson equation (PPE) Eq. (14), the pressure at time nþ 1 can be obtained from
r � 1
q
rpnþ1

� �
i

¼ 1
Dt
r � u�i : ð14Þ
The velocity at time nþ 1; unþ1
i will result from the projection of u�i . Therefore,
unþ1
i ¼ u�i �

Dt
q
rpnþ1

i : ð15Þ
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The particle position is finally advanced in time,
rnþ1
i ¼ rn

i þ Dt
unþ1

i þ un
i

2

� �
: ð16Þ
In an alternative formulation, Lee et al. [17] derived the velocity from the pressure correction with the particles at rn
i before

advancing their positions with the total velocity, termed truly incompressible SPH. This formulation was also applied here
and produced results identical to [6] for the test cases investigated. This incompressible divergence-free SPH method will be
referred to as ISPH_DF.

3.2. ISPH based on keeping density invariance (ISPH_DI) [25]

Similar to the method in [15], Shao and Lo [25] proposed a projection-based incompressible method to impose density
invariance to describe free surface flows. An intermediate velocity, u�i , is calculated without the pressure gradient term as
before,
u�i ¼ un
i þ mr2un

i þ Fn
i

� �
Dt: ð17Þ
The particles are convected to an intermediate position, r�i ,
r�i ¼ rn
i þ Dtu�i : ð18Þ
At this intermediate position, the intermediate velocity is projected on to two spaces, rPnþ1 and unþ1
i , which is similar to

ISPH_DF. But instead of calculating the pressure field Pnþ1 through a Poisson equation with a velocity divergence on the right
hand side (RHS), the pressure field is obtained by solving a Poisson equation with a relative density difference on RHS, as
shown in Eq. (19).
r � 1
q�
rPnþ1

� �
¼ q0 � q�

q0Dt2 ð19Þ
And the intermediate velocity field will be corrected by the pressure gradient,
unþ1
i ¼ un

i �
Dt
q�
rPnþ1: ð20Þ
To complete the time step, as for ISPH_DF, a second-order time marching scheme is used.
rnþ1
i ¼ rn

i þ Dt
unþ1

i þ un
i

2

� �
ð21Þ
Eqs. (19) and (14) are actually equivalent, if one assumes the continuity equation for the incompressible flow to be valid at
the intermediate position, r�i , with
ðr � uÞr�
i
¼ � 1

q
dq
dt

� �
r�

i

: ð22Þ
Substituting Eq. (22) into Eq. (14), Eq. (19) can be obtained. The numerical performance of two Poisson equations, Eqs. (14)
and (19), are quite different. In this work it is found that with Eq. (19) simulations are more stable, but the accuracy of ISPH
has been deteriorated. This density-invariant ISPH method will be referred to as ISPH_DI.

3.3. ISPH based on combining both a divergence-free velocity field and a density-invariant field (ISPH_DFDI) [12]

In [12], Hu and Adams point out that if only a divergence-free velocity field is enforced, a large density variation will
appear. They suggested that a divergence-free and density-invariance algorithm should be applied. This requires two pres-
sure Poisson equations to be solved in this algorithm.

Similar to Shao and Lo’s method [25], to keep the density constant, represented as qn
i ¼ q0

i , the particle positions are
adjusted. First, intermediate velocities and particle positions are obtained by
u�;nþ1=2
i ¼ un

i þ mr2un
i þ Fn

i

� �Dt
2

ð23Þ

r�;nþ1
i ¼ rn

i þ u�;nþ1=2
i Dt ð24Þ
The intermediate particle density q�;nþ1 is calculated. And a Poisson equation
Dt2

2
r � 1

q
rp

� �n

i

� �
¼ qn

i � q�;nþ1
i

qn
i

ð25Þ
is solved to adjust particle position, shown later. If we define
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ri ¼
X

j

xij ð26Þ
then
qi ¼
X

j

mjxij ¼ miri: ð27Þ
With the relation qn
i ¼ q0

i ¼ mir0
i and q�;nþ1

i ¼ mir�;nþ1
i , Eq. (25) can be written as
Dt2

2
r � 1

q
rp

� �n

i

� �
¼ r0

i � r�;nþ1
i

r0
i

: ð28Þ
After the pressure is calculated, the particle positions are adjusted through the pressure gradient ð1qrpÞni following
rnþ1
i ¼ r�;nþ1

i � 1
q
rp

� �n

i

Dt2

2
ð29Þ
During the simulation, the particle density will be recalculated at position rnþ1 from Eq. (27). A certain criterion for the
relative density difference, typically 1%, is set. If the criterion is not fulfilled, the particle positions will be adjusted by the
following internal iteration.
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Dt2

2
r � 1

q
rp

� �n;m

i

� �
¼ r0

i � rnþ1;m
i�

r0
i

! 1
q
rp

� �n;m

i

rnþ1;mþ1
i ¼ rnþ1;m

i � 1
q
rp

� �n;m

i

Dt2

2

rnþ1;mþ1
i�  rnþ1;mþ1

i

ð30Þ
where m is the number of internal iterations.
As for ISPH_DF, a Poisson equation needs to be solved to keep the velocity field divergence-free. First, the velocity field is

explicitly calculated without considering the pressure gradient term.
u�;nþ1
i ¼ u�;nþ1=2

i þ mr2u�;nþ1=2
i þ F�;nþ1=2

i

� �Dt
2

ð31Þ
The velocity field is then corrected by the pressure gradient,
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Fig. 4. Linear solver and boundary conditions test.

Fig. 5. The geometry and initial velocity field of vortex spin-down case.
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unþ1
i ¼ u�;nþ1

i � Dt
2q
rpnþ1

i ð32Þ
where, the pressure field is obtained from the pressure Poisson equation.
r � 1
q
rpnþ1

� �
i

¼ 2
Dt
r � u�;nþ1

i ð33Þ
Similar to Eq. (19) in ISPH_DI, Eq. (25) or (28) is solved to prevent particle clustering, while Eq. (33) is used to keep a diver-
gence-free velocity field. Uniform particle spacing improves the stability of simulations, as will be shown later. Through solv-
ing two Poisson equations, Eqs. (25) and (33), both the density invariance and divergence-free velocity field are
approximated. This combined incompressible SPH method will be referred to as ISPH_DFDI.

3.4. ISPH_DF with shifting particle position (ISPH_DFS)

In ISPH_DF, particles move along the streamlines when the Lagrangian-form Navier–Stokes equations are solved accu-
rately. The stretching and compressing of particle spacing, similar to the mesh distortion in the finite volume (FV) method,
Geometry of lid-driven cavity case. The graph shows the streamline in the case with Re ¼ 400, simulated by ISPH_DFS, with a resolution of 60 � 60.

y/D

u/
U

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x/D

v/
U

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5(a) (b)

Normalized velocity profiles in Taylor–Green vortices, Re ¼ 10; t ¼ 0:1 s, with a resolution of 40 � 40. Velocity components and distances are
ized with the velocity scale U;U ¼ 1, and the square length D;D ¼ 1. (a) Horizontal velocity component profile, at x ¼ 0:0 m; (b) vertical velocity
ent profile, at y ¼ 0:0 m. M = ISPH_DFDI; � = ISPH_DF; � = ISPH_DI; } = ISPH_DFS; — = analytical results.
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happen under certain conditions, such as Taylor–Green vortices shown in Fig. 2(a). It is observed in the simulations that this
non-uniform particle distribution will hinder the convergence of linear solvers. Also, on the one hand, if the streamlines
direct the particles towards each other, taking Taylor–Green vortices as an example, Fig. 3, the particles will cluster;
on the other hand, the non-physical behaviour of the kernel, introduced in Section 2.2, will weaken the interaction between
particles when particle distances are within a close range. Then particles will continue clustering if the inertial motion,
determined by Re number, is strong enough. The error, caused by this kernel flaw, also causes the instability in the
projection-based ISPH.

The following method stabilizes the accurate ISPH_DF method. The particle distribution is effectively well maintained,
shown in Fig. 2(b). The pressure field is calculated as in ISPH_DF. And the particles are advanced, shifted slightly, and accord-
ingly, the hydrodynamic variables are corrected by the Taylor series,
Fig. 8.
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Fig. 9.
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/i0 ¼ /i þ drii0 � ðr/Þi þO dr2
ii0

� �
ð34Þ
where / is a general variable; i and i0 are the particle’s old position and its new position respectively; drii0 is the distance
vector between the particle’s new position and its old position. In the following tests, only the first two terms are used in
simulations, giving an order consistent with the Laplacian operator. Higher order accuracy may be achieved by extending
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ent profile, at y ¼ 0:0 m: M = ISPH_DFDI; � = ISPH_DI; } = ISPH_DFS; — = analytical results.
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the Taylor series and the divergence-free condition would be maintained with the same order as the interpolation.With the
position shifting and interpolation, the particles redistribute themselves in a more isotropic manner, avoiding particle clus-
tering in the direction of maximum compression and sparse discretisation error in the stretching direction. The method with
particle shifting is called ISPH_DFS.

The idea of shifting particle positions has been proposed previously in the context of the Finite Volume Particle Method
(FVPM) by Nestor et al. [22]. This allows the use of particle velocities with a correction, u0, added to conserve fluid momen-
tum. Different from FVPM, the adjustment of particle velocity here will introduce extra diffusion terms to the total momen-
tum. The position shift is applied to particles, and the use of a first-order Taylor series interpolates hydrodynamic variable
values at the new position, as given in Eq. (34). Similar to the velocity correction equation, u0, in [22], but modifying the par-
ticle shifting magnitude, a, in relation to the particle convection distance and the particle size, the position shift reads
Fig. 10
normal

Fig. 11
normal
dri ¼ CaRi ð35Þ
where C is a constant, set as 0.01–0.1, as discussed below; a is the shifting magnitude which is equal to the maximum par-
ticle convection distance Umaxdt, with Umax the maximum particle velocity, and dt the time step; Ri is the shifting vector, and
reads:
time/T

u m
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/U
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Ri ¼
XMi

j¼1

�r2
i

r2
ij

nij ð36Þ
where Mi is the number of neighbouring particles around particle i; rij is the distance between particle i and particle j; �ri is
the average particle spacing in the neighbourhood of i, and
�ri ¼
1

Mi

XMi

j¼1

rij; ð37Þ
nij is the unit distance vector between particles i and j. The summation of nij actually represents the anisotropy of the particle
spacings. �r2

i =r2
ij is used here as a weighting function to reduce the influence from remote neighbouring particles. Ri is eval-

uated on a fixed particle map obtained after the evolution equation Eq. (16). No internal iteration for a converged particle
position is needed here.

The shifting distance should be large enough to prevent instability and small enough not to cause inaccuracy due to the
Taylor series correction. Values of C within the range 0.01–0.1 satisfy these criteria for these test cases and dependence on
Maximum velocity, umax , decaying against time in Taylor–Green vortices, Re ¼ 1000. Maximum velocity, umax , is normalized with velocity scale U;
scaled by T, where T ¼ D=U. -�- = ISPH_DI (40 � 40); � � � = ISPH_DFDI (40 � 40); -��- = ISPH_DFS (40 � 40); --- = ISPH_DFS (80 � 80); — = analytical
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Estimated relative error profiles for the horizontal velocity component, u, with different resolutions, Re ¼ 100. (a) Estimated error based on Eq.
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Reynolds number was not observed. A value of 0.04 is generally used. In [22], an average particle spacing, as defined in
Eq. (37), is used as the shifting magnitude a, considering the influence of particle size. However, it is observed in simulations
that when shifting distances are much larger than convection distances, large numerical error will appear in the fields of
hydrodynamic variables, even with the Taylor-series updating. To avoid this an upper limit on shifting distance a is simply
set as Umaxdt, updated at each time step. Note also that the shifting distance is always much less than the smoothing length h.

All in all, the algorithm can be summarized here as

� Convect particle i to an intermediate position r�i , as shown in Eq. (12);
� Calculate an intermediate velocity, u�i , without the pressure gradient term, as shown in Eq. (13);
� Calculate the pressure from the Poisson equation, as shown in Eq. (14);
� Correct the intermediate velocity, u�i , by the pressure gradient to obtain the velocity for next time step, unþ1

i , shown
in Eq. (15);

� The particle position is centred in time, as shown in Eq. (16);
� Shift the particle by Eq. (35);
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Fig. 14. Estimated relative error profiles for the horizontal velocity component, u, with different resolutions, Re ¼ 1000. (a) Estimated error based on
Eq. (41); (b) estimated error based on L2 norm. The time is normalized by T, and T ¼ U=D. — = 40 � 40; --- = 80 � 80; � � � = 120 � 120; -�- = 160 � 160;
–– = 200 � 200; -��- = 240 � 240.
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� Correct the velocity field by Eq. (34);
� Continue the calculation for next time step.

This method is actually similar in concept to the remeshing method in [3] using a fixed mesh but it maintains the meshless
characteristic. The shifting of particle position and corresponding interpolation will introduce truncation errors in the results
which will however be shown below to have negligible effect on the accuracy. This small change in ISPH_DF makes this
method much more robust. And the efficiency of simulations is improved, comparing with ISPH_DFDI. It should be pointed
out here that this method is not a strictly conservative method, similar to LFPM [9].

3.5. Linear solver

A Bi-Conjugate Gradients Stabilized solver (BiCGSTAB), with Jacobi preconditioner, is used to solve the linear system. A
small calculation is conducted to test the linear solver and boundary conditions with mirror particles. A 1-D channel with
periodic boundaries in x direction is set up. At the top of the channel, y ¼ 1, a homogeneous Neumann boundary, dP

dy ¼ 0,
is set; at the bottom, y ¼ 0, a Dirichlet boundary, P ¼ 0, is set. The equation d2P

dy2 ¼ �1 is solved with different resolutions.
The solver is tested with 40, 50 and 100 particles in the vertical direction, and compared with the analytical solution,
P ¼ �0:5y2 þ y, shown in Fig. 4. During all simulations, the convergence criterion is set as 1:0� 10�5 for the normalized
residual.
4. STAR-CD commercial package

Reference solutions for vortex spin-down and lid-driven cavity cases can probably be digitalized from the literature, but
with cheap and fast convergence of commercial CFD codes on 2D cases, we simply computed these cases again on a fine
Cartesian grid with the well-known STAR-CD, a Finite Volume commercial CFD code (see e.g. Jasak and Gosman [13] for a
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Fig. 16. Computing cost of ISPH_DFS, for physical time 2.0 s on a Dell OPTIPLEX GX620 PC, with a Dual Core 3.2 GHz CPU and 2 GB memory, against the
inverse particle spacing for Taylor–Green vortices, Re ¼ 1000.

Table 1
Computing costs comparison for Taylor–Green vortices with a resolution of 40 � 40. Physical time = 2.0 s. The same time step is used for all the methods under
the same Reynolds situation.

Re ¼ 10 Re ¼ 100 Re ¼ 1000

ISPH_DF 1,103 s Unstable Unstable
ISPH_DI 1,091 s 1,250 s 1,323 s
ISPH_DFDI 4,000 s 5,352 s 5,625 s
ISPH_DFS 1,213 s 1,281 s 1,387 s
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description and test of the FV algorithm). The convergence criterion is set as 10�5. The PISO algorithm is used for pressure
and velocity coupling. Second-order differencing schemes are used for convection terms in the calculation.
5. Simulation cases

5.1. Taylor–Green vortices

The Taylor–Green vortices simulations are conducted. The analytical velocity field is
Fig. 17.
velocity
(a) Hor� = ISP
u ¼ �Uebt cosð2pxÞsinð2pyÞ
v ¼ Uebt sinð2pxÞcosð2pyÞ

ð38Þ
where U is the velocity scale, equal to 1.0 m/s here; kinematic viscosity m are 0:1 m2=s;0:01 m2=s and 0:001 m2=s in three
runs with three different Reynolds numbers, Re ¼ 10;Re ¼ 100;Re ¼ 1000; b ¼ � 8p2

Re is the decay rate of the velocity field;
u and v are the horizontal and vertical velocity components respectively. Different resolutions are used to investigate the
spatial accuracy of ISPH_DFS. The Reynolds number is calculated by
Re ¼ UD
m

ð39Þ
where D is the length of the unit square side.
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Velocity and pressure profiles in vortex spin-down, Re ¼ 10; t ¼ 0:1 s, with a resolution of 40 � 40. Velocity components are normalized with the
scale U;U ¼ 1; the coordinates are normalized with the square length D;D ¼ 1; the pressure is normalized with qU2, where q is the fluid density.

izontal velocity component profile, at x ¼ 0:0m; (b) vertical velocity component profile, at y ¼ 0:0 m; (c) pressure profile at x ¼ 0:0 m. M = ISPH_DFDI;
H_DF; � = ISPH_DI; } = ISPH_DFS; — = STAR-CD.
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Because of the existence of analytical results for Taylor–Green vortices, the accuracy of the algorithm and the code can be
tested here. During simulations, it is observed that, under high Reynolds situations, the particle spacings are highly com-
pressed in one direction, but stretched in the other roughly normal direction, with ISPH_DF. Because of the error caused
by highly-distorted particle spacings, as mentioned before, the convergence with ISPH_DF can fail. For all values of Reynolds
number, the four projection-based ISPH methods are applied. The accuracy, stability and computing expense of the four
methods are compared.

5.2. Vortex spin-down

Similar to Taylor–Green vortices case, in vortex spin-down simulations, a vortex is bounded by four walls, placed in the
middle of the domain, shown in Fig. 5. The vortex spin-down case is simulated for Re ¼ 10;Re ¼ 100 and Re ¼ 1000. An initial
velocity field is given by
Fig. 18.
velocity
(a) Hor
M = ISPH
u ¼ Uðy� 0:5Þ
v ¼ Uð0:5� xÞ

ð40Þ
in a unit square. 41 � 41 particles, equivalent to a resolution of 40 � 40 in the FV method, are used to compare four projec-
tion-based ISPH methods. The Reynolds number calculation is the same as that in Taylor–Green vortices, Eq. (39). Also, D;U
and m are the same as those in Taylor–Green vortices.
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Velocity and pressure profiles in vortex spin-down, Re ¼ 100; t ¼ 1:0 s, with a resolution of 40 � 40. Velocity components are normalized with the
scale U;U ¼ 1; the coordinates are normalized with the square length D;D ¼ 1; the pressure is normalized with qU2, where q is the fluid density.
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The accuracy, stability and computing time are compared among all the four projection-based ISPH methods. During sim-
ulations, it is found that particle spacings cannot be well maintained if ISPH_DF is used. It is the same as the findings in [9]
that the irregular particle distribution hinders the convergence of the linear solver, and sometimes even causes the conver-
gence to fail.

5.3. Lid-driven cavity

The lid-driven cavity problem has long been used a test or validation case for new codes or new solution methods. A good
set of data for comparison is [10], where the data are listed out in a table for different Reynolds number situations. The two-
dimensional geometry is shown in Fig. 6. In simulations, the fluid is accelerated by the lid at the top of the cavity to a steady
state. Simulations with fully-developed flows are compared with data in [10] and STAR_CD results.

In this test case, only ISPH_DFS is used. The Reynolds number calculation is the same as that in Taylor–Green vortices. U
and D are set to 1 m/s and 1 m for convenience. Reynolds numbers, Re ¼ 100;Re ¼ 400 and Re ¼ 1000, are simulated.

6. Results and discussion

In this section, all simulations are run on a computer with a Dual Core 3.2 GHz CPU and 2 GB memory. Computing cost for
different projection-based ISPH methods are compared in Taylor–Green vortices and vortex spin-down.
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Fig. 19. Velocity and pressure profiles in vortex spin-down, Re ¼ 1000; t ¼ 1:0s, with a resolution of 40 � 40. Velocity components are normalized with the
velocity scale U;U ¼ 1; the coordinates are normalized with the square length D;D ¼ 1; the pressure is normalized with qU2, where q is the fluid density.
(a) Horizontal velocity component profile, at x ¼ 0:0 m; (b) vertical velocity component profile, at y ¼ 0:0 m; (c) pressure profile at
x ¼ 0:0 m: M = ISPH_DFDI; � = ISPH_DI; } = ISPH_DFS; — = STAR-CD.



6.1. Taylor–Green vortices results

Taylor–Green vortices are simulated in this work, with Re ¼ 10;Re ¼ 100;Re ¼ 1000. Different resolutions are used with
Re ¼ 100 and Re ¼ 1000 cases to investigate accuracy. For Re ¼ 10, all four methods give stable and accurate solutions. How-
ever, when the Re number increases to 100, the particle spacings are compressed in one direction, and stretched in the other
direction roughly normal, as shown in Fig. 2. When particles cluster together as happens at the four points
ð	0:25 m;	 0:25 mÞ in Fig. 3, the error caused by the kernel flaw, presented in Section 2.2, will increase with decrease in
the particle spacing. The clustering cannot be avoided for high Reynolds situations if particles move accurately along stream-
lines. It is observed that this error will accumulate, and jeopardize the simulation stability for the higher Reynolds number
situations.

Fig. 7 presents the normalized velocity component, u and v, profiles, at x ¼ 0:0 m and y ¼ 0:0 m;t ¼ 0:1 s, with Re ¼ 10;
Figs. 8 and 9 at time t ¼ 1:0 s, for Re ¼ 100 and Re ¼ 1000 cases respectively. It can be observed in Fig. 7 that all four pro-
jection-based ISPH methods can provide very good prediction for the velocity field with Re ¼ 10. When the Reynolds number
increases to 100, ISPH_DF could not stably simulate the flow development, while the other three methods could continue
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Fig. 20. Maximum velocity magnitude, Umax , decaying against time in vortex spin-down, Re ¼ 10, with a resolution of 40 � 40. Maximum velocity, Umax , is
normalized with velocity scale U; the physical time, t, is normalized with T, where T ¼ U=D. - - - = ISPH_DF; -�- = ISPH_DI; � � � = ISPH_DFDI; -��- = ISPH_DFS;
— = STAR-CD.
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simulations. In Fig. 8, it is shown that ISPH_DFDI and ISPH_DFS predict the velocity field accurately; ISPH_DI underpredicts
the velocities at x ¼ 	0:25 m and y ¼ 	0:25 m. Increasing Reynolds number to 1000, ISPH_DFS provides smooth velocity
profiles, but slightly underpredicts magnitudes; with ISPH_DI method, substantial numerical noise is generated; with
ISPH_DFDI, some small numerical noise occurs at y ¼ 	0:25 m and x ¼ 	0:25 m, shown in enlarged parts of profiles in Fig. 9.
Fig. 22. Maximum velocity magnitude, Umax , decaying against time in vortex spin-down, Re ¼ 1000, with a resolution of 40 � 40. Maximum velocity, Umax ,
is normalized with velocity scale U; the physical time, t, is normalized with T, where T ¼ U=D. -�- = ISPH_DI; � � � = ISPH_DFDI; -��- = ISPH_DFS; — = STAR-CD.

Table 2
Computing costs comparison for vortex spin-down with a resolution of 40 � 40. Physical time t ¼ 2:0s. The same time step is used for all the methods under the
same Reynolds situation.

Re ¼ 10 Re ¼ 100 Re ¼ 1000

ISPH_DF 913 s Unstable Unstable
ISPH_DI 934 s 997 s 1,233 s
ISPH_DFDI 1262 s 5339 s 7679 s
ISPH_DFS 965 s 1067 s 1395 s
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Fig. 23. Velocity profiles in lid-driven cavity, Re ¼ 100. Velocity components are normalized with the lid velocity U;U ¼ 1. The distances are normalized
with the square length D;D ¼ 1. (a) Horizontal velocity component profile, at x ¼ 0:0 m; (b) vertical velocity component profile, at y ¼ 0:0 m. --- = results
with 41 � 41 resolution; � � � = results with 81 � 81 resolution; — = results with 161 � 161 resolution; Thick solid line = STAR-CD with 160 � 160 resolution;
� = Ghia 1982 [10].
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Figs. 10–12 present the maximum velocity magnitude, umax, decays against time for Re ¼ 10;Re ¼ 100 and Re ¼ 1000,
respectively. For the low Reynolds case, Re ¼ 10, all the methods stably simulate the flow development, and ISPH_DFS gives
the most accurate prediction, shown in Fig. 10. Increasing Reynolds number to, or over 100, only ISPH_DI, ISPH_DFDI and
ISPH_DFS are presented, due to stability reasons. From Figs. 11 and 12, it can be seen that ISPH_DI does not provide accurate
prediction. ISPH_DFDI could simulate the flow with Re ¼ 100. But with Re ¼ 1000, and the same particle resolution, 40 � 40,
certain numerical noise appears on the profile at the beginning of the flow development, shown in the enlarged part in
Fig. 12. Results with Re ¼ 1000 were also not reported in [12]. Because ISPH_DFS underpredicts the maximum velocity mag-
nitude, umax, with a resolution of 40 � 40, a run with a higher resolution of 80 � 80 is conducted. Convergence towards ana-
lytical results is obtained.

To quantify the error in the ISPH_DFS methods, profiles of an estimated relative error are plotted out. In [12,3], a relative
error, e, is calculated, and defined as
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Velocity profiles in lid-driven cavity, Re ¼ 400. Velocity components are normalized with the lid velocity U;U ¼ 1. The distances are normalized
e square length D;D ¼ 1. (a) Horizontal velocity component profile, at x ¼ 0:0 m; (b) vertical velocity component profile, at y ¼ 0:0 m. ––– = results
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on; � = Ghia 1982 [10].

u/U

y/
D

0 0.5 1

0

0.2

0.4

0.6

0.8

1

x/D

v/
U

0 0.2 0.4 0.6 0.8 1-0.6

-0.4

-0.2

0

0.2

0.4(a) (b)

Velocity profiles in lid-driven cavity, Re ¼ 1000. Velocity components are normalized with the lid velocity U;U ¼ 1. The distances are normalized
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on; � = Ghia 1982 [10].
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was also obtained in [17]. We also tested redistribution of particles on a uniform mesh, following Chaniotis et al.[3], and very
similar errors were obtained.

In Table 1, the computing costs for the four methods are listed. ISPH_DFDI is the most time-consuming method. The com-
puting cost of ISPH_DFS method is only slightly more than ISPH_DF and ISPH_DI. As an example, the computing cost of
ISPH_DFS against the resolution is shown in Fig. 16 for Taylor–Green vortices at Re = 1000. The computing expense increases
as 1=dx increases, approximately as a power law with an exponent of 2.5.

All the four methods could manage to simulate the flow development with a low Reynolds number, Re ¼ 10. ISPH_DF can-
not stably simulate higher Reynolds cases. Although ISPH_DI could keep well distributed particle spacings, the numerical
noise generated by this method contaminates the results under higher Reynolds number situations. ISPH_DFDI stably and
accurately simulates cases with Reynolds numbers, Re ¼ 10 and Re ¼ 100. But with Re ¼ 1000, small numerical noise ap-
pears on the profile, shown in Fig. 12. ISPH_DFS efficiently stabilizes all simulations, and supplies predictions with less
numerical noise for a given resolution. Fig. 15 shows that ISPH_DFS is only first-order accurate in space, probably caused
by the limited interpolation accuracy of SPH [24].

6.2. Vortex spin-down results

In vortex spin-down simulations, cases with Re ¼ 10;Re ¼ 100 and Re ¼ 1000 are simulated. Finite volume simulations,
with STAR_CD commercial software, were run as comparison against projection-based ISPH methods. The mesh convergence
test with uniform meshes, from 40 � 40, 80 � 80, to 160 � 160, is conducted in finite volume simulations. Converged results
are obtained with a resolution of 160 � 160 and are used for the comparison. With Re ¼ 10, all four methods manage to pro-
vide accurate predictions, shown in Fig. 17. However, when the Reynolds number increases to 100, the simulation became
unstable with ISPH_DF. As with the Taylor–Green vortex simulations, particle spacings are strongly distorted, which makes
simulations quite unstable.

Figs. 17 and 20 present the simulation results with Re ¼ 10 situation using all four ISPH methods. All the methods provide
very good prediction for the velocity and kinetic energy decay. Note that for ISPH_DFDI pressure is used as an internal mech-
anism to drive velocity. Since this is applied in the correction at the second half time step, Eq. (32), the computed pressure
appears as twice the actual pressure. For Re ¼ 100 or higher, ISPH_DF does not provide stable simulations, as explained be-
fore. With ISPH_DI, the simulation is stabilized. However, this method could not predict the fluid field accurately. Much
numerical noise appears in the simulations, shown in Figs. 19, 21 and 22. ISPH_DFDI and ISPH_DFS both accurately predict
the flow development under the situation of Re ¼ 100, presented in Figs. 18 and 21. For Re ¼ 1000, they both underpredict
the kinetic energy decaying rate although the velocity field is well prescribed at a physical time of 1 s, shown in Figs. 19 and
22. With Re ¼ 1000, ISPH_DFDI produces small numerical noise at the beginning of flow development, shown in the enlarged
part in Fig. 22.

In Table 2, the computing costs of all the four methods are listed. Increasing Reynolds number from 10 to 1000, the com-
puting expense increases markedly with ISPH_DFDI. For higher Reynolds numbers, the internal iteration in ISPH_DFDI, Eq.
(30), sometimes needs more than 10 cycles to regularize particle spacing. It can be seen that ISPH_DFS is only slightly more
computationally expensive than ISPH_DF and ISPH_DI, while providing good stability and accuracy.
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Fig. 28. Pressure profile along the square diagonal, from (0.0, 0.0) to (1.0,1.0), in lid-driven cavity, Re ¼ 1000. � = STAR-CD with 160 � 160 resolution;
--- = ISPH_DFS with 81 � 81 resolution; � � � = ISPH_DFS with 161 � 161 resolution; — = ISPH_DFS with 241 � 241 resolution.
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6.3. Lid-driven cavity results

As a widely-studied test case, the lid-driven cavity is used to further validate the ISPH_DFS algorithm. Reynolds numbers,
Re ¼ 100;Re ¼ 400, and Re ¼ 1000, are simulated and results are compared with data from [10]. Convergence tests for
ISPH_DFS, with different resolutions are conducted for all Reynolds numbers.

In Figs. 23–25, the velocity profiles in the middle of the domain, x ¼ 0:5 m and y ¼ 0:5 m, are presented for each Reynolds
number, Re ¼ 100;Re ¼ 400;Re ¼ 1000, respectively. With increasing the resolution, the simulation results are converging to
Ghia’s results [10]. However, as the Reynolds number increases, resolution has to also increase to produce satisfactory
results.

Figs. 26–28 present pressure profiles along the diagonal line, from (0.0 m,0.0 m) to (1.0 m,1.0 m). With a resolution of
160 � 160, STAR-CD can achieve almost the same accuracy for velocity as [10], and corresponding pressure results are used
for validation. ISPH_DFS produces almost identical results for Re ¼ 100 for all resolutions. For the higher Reynolds numbers,
results can be seen to converge with increasing resolution, with a close agreement with 240 � 240 resolution.

With the same resolution, ISPH_DFS predicts flows less accurately than the finite volume method, which is probably
caused by the first-order accuracy limitation of ISPH_DFS.

7. Conclusion

The accuracy and stability of three existing projection-based incompressible SPH (ISPH) methods are tested for Taylor–
Green and vortex spin-down flows. A new projection-based ISPH method is introduced which maintains stability and accu-
racy without loss of efficiency. It can be concluded that:

(1) ISPH_DF provides accurate predictions in certain cases. However, when particle spacing becomes highly distorted,
errors caused by anisotropic particle spacings accumulate. ISPH_DF exhibits instability in such cases.

(2) ISPH_DI overcomes the instability introduced by ill-distributed particles. However, it is shown that this method does
not give accurate predictions for these flows. The numerical noise can be extremely high.

(3) By combining the accuracy characteristics of ISPH_DF and the stability of ISPH_DI, ISPH_DFDI produces accurate and
stable simulations, with evenly distributed particles. However, efficiency is sacrificed, with the method often requiring
many internal iterations. Also it can be observed in Figs. 12 and 22 that, with the same numerical parameters,
ISPH_DFDI could introduce small numerical noise in the result.

(4) Based on ISPH_DF, ISPH_DFS provides a stable algorithm without sacrificing efficiency. Particles are shifted slightly
across streamlines, avoiding particle spacing distortion and the error resulting from particle clustering, and their
hydrodynamic properties are adjusted by Taylor series interpolation. This projection-based ISPH method has the
first-order spatial accuracy, compared with the second order for finite volume methods, producing slower conver-
gence. Similar results were obtained by redistributing particles on a uniform grid [3], tested for Taylor–Green vortices,
but the attraction of a mesh-free method is partially lost.
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